TU Delft is one of the academic partners in an innovative aviation hydrogen handling and refuelling project, led by Airbus and supported by academic partners, airport operators and leading hydrogen-industry companies that was launched on 16 May in Brussels. The project, co-funded by the European Union, has been launched to demonstrate small-scale liquid hydrogen aircraft ground operations at three European airports, including Rotterdam The Hague Airport.
The urge to decarbonise our economy and to develop Europe’s energy independence is leading to a major trend of hydrogen for mobility and stationary applications. Hydrogen will also be a solution to decarbonise short- and medium-haul aviation and will be crucial for the advancement of low-carbon aviation operations.
The GOLIAT (Ground Operations of LIquid hydrogen AircrafT) project* will receive funding of €10.8 million from the EU’s Horizon Europe Framework Programme, over a duration of four years, and will demonstrate how high-flow liquid hydrogen (LH2) handling and refuelling technologies can be developed and used safely and reliably for airport operations.
The GOLIAT consortium consists of 10 partners from eight countries: Airbus (France, Germany, UK), Chart Industries (Czech Republic, Italy), TU Delft (Netherlands), Leibniz University Hannover (Germany), Royal Schiphol Group (Netherlands), Rotterdam The Hague Airport (Netherlands), Vinci Airports (France, Portugal), Stuttgart Airport (Germany), H2FLY (Germany), and Budapest Airport (Hungary).
- The group will support the aviation industry’s adoption of LH2 transportation and energy storage solutions by:
- Developing and demonstrating LH2 refuelling technologies scaled-up for future large commercial aircraft;
- Demonstrating small-scale LH2 aircraft ground operations at airports;
- Developing the standardisation and certification framework for future LH2 operations;
- Assessing the sizing and economics of the hydrogen value chains for airports.
As a clean and efficient fuel, LH2 offers a promising solution for reducing the greenhouse gas emissions associated with airport operations and their dependence on fossil fuels. LH2’s high energy density enables long-range travel for aircraft, yet there are many steps to the widespread deployment of hydrogen at airports, including the need to better understand the operational, regulatory, economic and safety impacts, as well as the capacity and performance of technologies.
Tags: Airbus, Aviation, Hydrogen, Liquid
Recent Posts
Zero-carbon ammonia for shipping faces challenges
Wärtsilä signs lifecycle agreement for 7 Capital Gas LNG carriers
ABS releases report on nuclear LNG carrier design
NTPC develops indigenous catalyst for methanol production
Huangpu Wenchong receives AIP from CCS for ships using methanol and ammonia
Climate change will cause India’s GDP to decline by 24.7% by 2070: ADB
Masdar and EMSTEEL complete project using green hydrogen to produce steel
DNV Grants HHI AiP for ammonia DF large container vessel