A team of Northwestern researchers has conducted a study exploring ways to reduce reliance on imports of the in high-demand mineral graphite, which powers everything from electric vehicles (EVs) to cell phones.
The paper, which published in the journal Environmental Science and Technology, is the first natural and synthetic graphite material flow analysis for the US, and considers 11 end-use applications for graphite, two waste management stages and three recycling pathways.
Dunn is an associate professor of chemical and biological engineering at Northwestern’s McCormick School of Engineering and director of the Center for Engineering Sustainability and Resilience. The paper was co-authored by Jinrui Zhang, who at the time of the study initiation was a post-doctoral scholar in chemical and biological engineering, and Chao Liang, previously a member of Northwestern’s Institute for Sustainability and Energy (ISEN). Both co-authors are alumni of Dunn’s research group.
The US uses mostly synthetic graphite, which is produced from by-products of the fossil fuel industry and creates a paradoxical relationship between graphite and technologies like electric vehicles (EVs) that aim to remove fossil fuel supply chains from transportation and cut greenhouse gas emissions.
Natural graphite, alternately, is sourced from mines and imported to the US mostly from China. Nearly all the graphite used in the US goes into electrodes for steel manufacturing. As the battery supply chain in the US ramps up, measures like the Inflation Reduction Act seek to incentivize the use of domestically sourced materials — including graphite — in US-made batteries.
Given the growing importance of graphite in energy storage technologies like lithium-ion batteries, the team carried out this analysis to characterize the major production routes of the mineral, its main uses and opportunities to reduce consumption through recycling. Data from 2018 — the most recent period with sufficient data for this type of analysis — was used for the study.
Most of the graphite consumed in the U.S. in 2018 was synthetic graphite, with 63% of this graphite produced domestically. Production of synthetic graphite emits more greenhouse gases than mining natural graphite (Natural graphite has between 62% and 89% lower greenhouse gas emissions). Synthetic graphite is also more expensive. However, the U.S. does not mine natural graphite but imports it, predominately from China.
As the only material that conducts electricity besides metal, the main use of graphite is for electrodes in steel making. As demand for low-carbon steel increases, more graphite may be consumed in electrode production. During steel making, graphite burns and dissipates — much like how graphite pencils start to disappear as you write with them. Though it is not impossible to recover dissipated graphite, it rarely is, diminishing opportunities to recover the mineral through recycling. Technologies to recover graphite from lithium-ion batteries are increasing in maturity but not yet common.
Dunn said that part of the focus on domestic sources and recycling of graphite-containing products like lithium-ion batteries is based on the current supply chain’s potential instability and projected increasing demand.
With the passage of the Inflation Reduction Act of 2022, more funding will move toward the use of domestically sourced and recycled graphite, and Dunn said the US. needs to be ready to make the shift.
Tags: Environment, EVs, Graphite, Mining
Recent Posts
Zero-carbon ammonia for shipping faces challenges
Wärtsilä signs lifecycle agreement for 7 Capital Gas LNG carriers
ABS releases report on nuclear LNG carrier design
NTPC develops indigenous catalyst for methanol production
Huangpu Wenchong receives AIP from CCS for ships using methanol and ammonia
Climate change will cause India’s GDP to decline by 24.7% by 2070: ADB
Masdar and EMSTEEL complete project using green hydrogen to produce steel
DNV Grants HHI AiP for ammonia DF large container vessel