Researchers at Stockholm University have for the first time been able to study the surface of a copper-zinc catalyst when carbon dioxide is reduced to methanol. The results are published in the scientific journal Science. A better knowledge of the catalytic process and the possibility of finding even more efficient materials opens the door for a green transition in the chemical industry.
Methanol is currently one of the most important petrochemical basic chemicals, with an annual production of 110 million metric tons, and can be converted into tens of thousands of different products and used for the manufacture of, for example, plastics, detergents, pharmaceuticals and fuels. Methanol also has the potential to become a future energy carrier where, for example, aviation fuel can be produced using captured carbon dioxide and hydrogen from electrolysis of water instead of using natural gas. A future green transformation of the chemical industry, similar to the one with green steel, where wind or solar energy drives electrolytic cells is therefore a possibility.
Source: https://phys.org/news/
Tags: Carbon dioxide, Chemical Industry, Methanol, Stockholm University
Recent Posts
Lumax to acquire majority stake in Greenfuel Energy Solutions
Ethanol production capacity in India increases
Singapore bunker hub posts decline in fuel sales for Aug
Nayara Energy sees 14.3% rise in domestic fuel sales
Amid hike in demand for ethanol, India may become importer of corn
India announces partnership with the European Hydrogen Week
FuelEU Maritime ready for 2025?
MOL, Chevron to install pair of hard sails on LNG carrier